设为首页
收藏本站
开启辅助访问
切换到窄版
登录
立即注册
只需一步,快速开始
首页
BBS
剑灵怀旧服
Unity
美术资源
UE
全套源码
其他内容
奖励任务
分享
Share
每日任务中心
搜索
搜索
怀旧插件
怀旧脚本数据
怀旧攻略
公益服开服通知
AI工具分享
Unity插件
Unity问题答疑
Unity学习教程
Unity AI算法
Unity源码
其他美术文件
MAY文件
3D Max
FBX模型
UE技术讨论
UE学习视频
UE源码
网站源代码
手机游戏源代码
PC游戏
游戏捏脸
其他插件
OFFER摸吧
魔兽地图
单机游戏
本版
帖子
用户
爱开源网
»
首页
›
AIGC
›
AI工具分享
›
LLM-项目详解-Chinese-LLaMA-AIpaca(一):LLM+LoRa微 ...
返回列表
发新帖
LLM-项目详解-Chinese-LLaMA-AIpaca(一):LLM+LoRa微调加速技术原理及基
[复制链接]
780
|
0
|
2023-8-12 17:01:21
来自手机
|
显示全部楼层
|
阅读模式
如何花费较少的算力成本来进行微调训练,十分重要,当前关于LLaMA、Alpaca、Instruct微调、LoRa微调等多个概念大家讲的很多,最近也在学习,也看到几个有趣的话题(主要参考于(https://github.com/ymcui/Chinese-LLaMA-Alpaca):
首先,来看关于Instruct微调和LoRa微调
Instruct微调和LoRa微调是两种不同的技术。 Instruct微调是指在深度神经网络训练过程中调整模型参数的过程,以优化模型的性能。在微调过程中,使用一个预先训练好的模型作为基础模型,然后在新的数据集上对该模型进行微调。Instruct微调是一种通过更新预训练模型的所有参数来完成的微调方法,通过微调使其适用于多个下游应用。
LoRa微调则是指对低功耗广域网(LoRaWAN)中的LoRa节点参数进行微调的过程,以提高节点的传输效率。在LoRa微调中,需要了解节点的硬件和网络部署情况,并通过对节点参数进行微小调整来优化传输效率。
与Instruct微调相比,LoRA在每个Transformer块中注入可训练层,因为不需要为大多数模型权重计算梯度,大大减少了需要训练参数的数量并且降低了GPU内存的要求。 研究发现,使用LoRA进行的微调质量与全模型微调相当,速度更快并且需要更少的计算。因此,如果有低延迟和低内存需求的情况,建议使用LoRA微调。
其次,我们再来看看为什么会有LLaMA模型和LoRA两种模型
如上所述,模型的微调方式有很多种,基于LoRA的微调产生保存了新的权重,可以将生成的LoRA权重认为是一个原来LLaMA模型的补丁权重
来源:
https://blog.csdn.net/u013250861/article/details/131218221
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!
回复
使用道具
举报
返回列表
发新帖
高级模式
B
Color
Image
Link
Quote
Code
Smilies
您需要登录后才可以回帖
登录
|
立即注册
本版积分规则
发表回复
回帖后跳转到最后一页
乐萍
20
主题
0
回帖
60
积分
注册会员
注册会员, 积分 60, 距离下一级还需 290 积分
注册会员, 积分 60, 距离下一级还需 290 积分
积分
60
加好友
发消息
回复楼主
返回列表
AI工具分享
AI开源
其他
图文推荐
非绿色-黑鳍自动换角色组队吃药自动没疲劳刷金
2024-09-21
绿色-剑灵怀旧完整主线(10月更新)有韩服
2024-09-12
非绿色-定制AI全自动黑鳍V1.2
2024-09-14
剑灵三系精修端 星术咒3鬼3 T2 饰品属性外观
2023-08-16
Unity 超级马里奥
2023-08-22
热门排行
1
非绿色-黑鳍自动换角色组队吃药自动没疲劳
2
非绿色-定制AI全自动黑鳍V1.2
3
绿色-剑灵怀旧完整主线(10月更新)有韩服
4
剑灵三系精修端 星术咒3鬼3 T2 饰品属性外
5
Unity 超级马里奥
6
AI绘画stable-diffusion-webui指定GPU运行
7
非绿色-武神塔合集
8
非绿色-使用教程攻略
9
非绿色 3号自动切线 黑骑 钓鱼 蓝蛙
10
绿色-黑鳍脚本合集